Aubin, Blum, Golterman, Jung, Peris, Tu: Summary/Plans

Tom Blum(UCONN/RBRC)

Muon g-2 Theory Initiative INT Workshop

September 13, 2019

Outline I

Summary

2 Future plans

References

4 Appendix

Setup for the HVP calculation [Aubin et al., 2019]

- 2+1+1 flavors of HISQ fermions MILC [Bazavov et al., 2017]
- ullet Three lattice spacings, \sim 0.06, 0.09, 0.12 fm, roughly same volume
- Connected HVP computed only for degenerate light quarks, physical pion mass
- HVP constructed from conserved vector currents (no renormalization)
- Partially quenched: Naik term is omitted in the current
- Time momentum representation Bernecker-Meyer 2011
- AMA and full volume LMA RBC/UKQCD

[Blum et al., 2018, Blum et al., 2013, Bali et al., 2010, Giusti et al., 2004, DeGrand and Schaefer, 2005]

Finite volume corrections to NNLO in ChiPT in coordinate space

c.f. [Bijnens and Relefors, 2017] in momentum space

HISQ 2+1+1 physical point ensembles MILC [Bazavov et al., 2017]

m_{π}						AMA	measurements
(MeV)	a (fm)	size	<i>L</i> (fm)	$m_{\pi}L$	LM	srcs	(approx-exact-LMA)
133	0.12121(64)	$48^{3} \times 64$	5.82	3.91	3000	$4^3 \times 4$	26-26-26
130	0.08787(46)	$64^{3} \times 96$	5.62	3.66	3000	$4^3 \times 4$	36-36-40
134	0.05684(30)	$96^3 \times 192$	5.46	3.73	2000	$3^3 \times 8$	21-21-22

AMA+LMA:

- 3000 and 2000 (96³) exact low modes of preconditioned Dirac op, $M^{\dagger}M$
- ullet Eigenvectors of staggered Dirac op M come in pairs, $\pm i\lambda$
- Reconstruct eigenvector of M on all sites, (n_e, n_o) , $i\lambda_n$
- Get second eignvector for free: $(n_e, -n_o)$, $-i\lambda_n$
- Use for full volume LMA, deflation of CG, improved approximation in AMA

Noise reduction: AMA+LMA RBC/UKQCD [Blum et al., 2013, Giusti et al., 2004, DeGrand and Schaefer, 2005]

All mode averaging (AMA) combined with full volume low mode averaging (LMA) can be very effective in reducing statistical errors for HVP (C. Lehner RBC/UKQCD [Blum et al., 2018])

AMA
$$\langle O \rangle = \langle O \rangle_{\text{exact}} - \langle O \rangle_{\text{approx}} + \frac{1}{N} \sum_{i} \langle O_{i} \rangle_{\text{approx}}$$

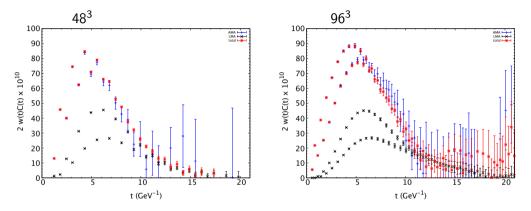
 $\langle O_i
angle_{
m approx}$: props with N_{low} exact low modes, sloppy (relaxed stopping condition) CG

Noise reduction: AMA+LMA RBC/UKQCD [Blum et al., 2013, Giusti et al., 2004, DeGrand and Schaefer, 2005]

All mode averaging (AMA) combined with full volume low mode averaging (LMA) can be very effective in reducing statistical errors for HVP (C. Lehner RBC/UKQCD [Blum et al., 2018])

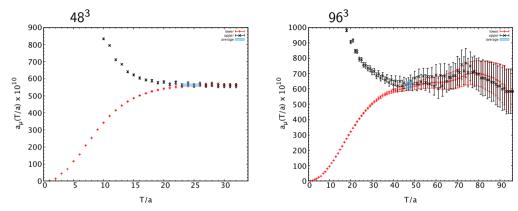
AMA
$$\langle O \rangle = \langle O \rangle_{\mathrm{exact}} - \langle O \rangle_{\mathrm{approx}} + \frac{1}{N} \sum_{i} \langle O_{i} \rangle_{\mathrm{approx}}$$
 $+ \mathsf{LMA}$
 $- \frac{1}{N} \sum_{i} \langle O_{i} \rangle_{\mathrm{LM}} + \frac{1}{V} \sum_{i} \langle O_{i} \rangle_{\mathrm{LM}}$

 $\langle O_i
angle_{
m approx}$: props with $N_{
m low}$ exact low modes, sloppy (relaxed stopping condition) CG



- AMA: $4^3 \times 4 = 256$ ($3^3 \times 8 = 216$, 96^3) approx props, 8 exact props
- LMA: $3000(\times 2)$ Low modes $(2000(\times 2) \text{ for } 96^3)$
- Huge reduction in statistical error at long distance from full volume low mode average c.f. RBC/UKQCD [Blum et al., 2018]

Bounding method RBC/UKQCD [Blum et al., 2018], BMW [Borsanyi et al., 2018]



(total a_{μ} for choice of T is plotted)

- Lower bound: C(t) = 0, t > T (BMW choice)
- Upper bound: $C(t) = C(T)e^{-E_0(t-T)}$, $E_0 = 2\sqrt{m_\pi^2 + (2\pi/L)^2}$
- averages: 2.7-3.2 fm and 2.6-2.8 fm (96³)

Finite Volume Corrections

Use chiral perturbation theory (ChiPT) in configuration space to compute finite volume corrections to C(t)

(Bijnens and Relefors computed NNLO corrections in momentum space)

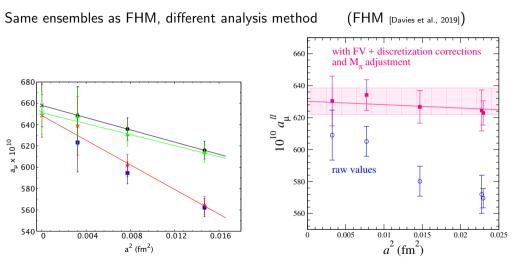
- NLO including leading discretization (taste symmetry breaking) effects
- NNLO in continuum. Big!

	$NLO+taste\;(a \neq 0)$	$NLO\;(a=0)$	NNLO $(a = 0)$
48 ³ , 0.12 fm	51.6	18.1	7.4
64 ³ , 0.09 fm	34.2	21.6	9.0
96 ³ , 0.06 fm	96 ³ , 0.06 fm 9.5		9.1

Corrections to a_{μ} given in units of 10^{-10}

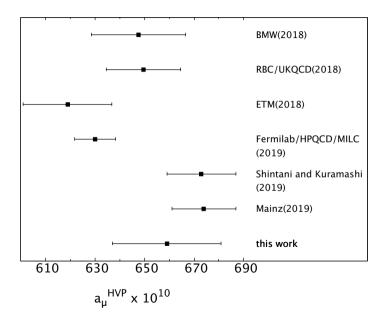
ullet Procedure: correct $a \neq 0$ to NLO, $a \rightarrow 0$, add average NNLO correction

Continuum limit



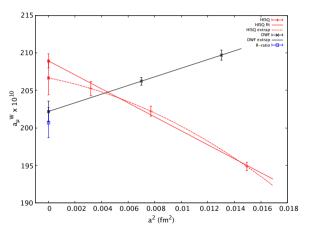
Difference: mostly NNLO ChiPT (us) and model (them) which have opposite signs

Comparison with other recent results



Window method RBC/UKQCD [Blum et al., 2018] comparison with DWF and R-ratio

$$a_{\mu}^W = \sum C(t)w(t)(\Theta(t,t_0,\Delta) - \Theta(t,t_1,\Delta)), \quad \Theta(t,t',\Delta) = 0.5(1+\tanh((t-t')/\Delta))$$



- allows precise comparison of continuum limit and
- combine lattice and dispersive results
- all points physical
- all $L \approx 5.5$ fm
- no ISB or FV corrections
- difference is 2-3 σ : lattice spacing, statistics may be responsible

window parameters: $t_0 = 0.4$, $t_1 = 1.0$, $\Delta = 0.15$ fm

Outline I

Summary

2 Future plans

References

4 Appendix

Immediate plan

- Extend LMA to 3000 (\times 2) eigenvectors on 96³ to match 48³, 64³
 - number of needed LM depends on physical volume
 - If 96^3 error $\approx 64^3$ error, \rightarrow stat error in continuum limit $\times 1/2$
- 2 New ensemble, 0.15 fm
 - Improve continuum limit
 - test LMA on smaller lattice, but same physical volume, mass
- O check NNLO ChiPT against momentum space calculation (Bijnens and Relefors)
- extend NNLO ChiPT to finite a (taste breaking)

Longer term plans

Improving long distance contributions

- GEVP, improved bounding method (BMW, Mainz, RBC/UKQCD)
- Model independent fit using Padé approximants

Improve statistics by $\sim \times 10$, competitive with RBC/UKQCD, FHM, ...

• implement GEVP, local currents, ...

Acknowledgments

- This research was supported in part by the US DOE
- Computational resources were provided by the USQCD Collaboration
- We thank the MILC Collaboration for the use of their configurations and providing taste pion masses

Outline I

Summary

2 Future plans

3 References

4 Appendix

Aubin, C., Blum, T., Tu, C., Golterman, M., Jung, C., and Peris, S. (2019).

Light quark vacuum polarization at the physical point and contribution to the muon g-2.

Bali, G. S., Collins, S., and Schafer, A. (2010).

Effective noise reduction techniques for disconnected loops in Lattice QCD.

Comput. Phys. Commun., 181:1570-1583.

Bazavov, A. et al. (2017).

B- and D-meson leptonic decay constants from four-flavor lattice QCD.

Bijnens, J. and Relefors, J. (2017).

Vector two-point functions in finite volume using partially quenched chiral perturbation theory at two loops.

JHEP, 12:114.

Blum, T., Boyle, P. A., Glpers, V., Izubuchi, T., Jin, L., Jung, C., Jttner, A., Lehner, C., Portelli, A., and Tsang, J. T. (2018).

Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment.

Blum, T., Izubuchi, T., and Shintani, E. (2013).

New class of variance-reduction techniques using lattice symmetries.

Phys.Rev., D88(9):094503.

Borsanyi, S. et al. (2018).

Hadronic vacuum polarization contribution to the anomalous magnetic moments of leptons from first principles.

Phys. Rev. Lett., 121(2):022002.

Chakraborty, B. et al. (2018).

Strong-isospin-breaking correction to the muon anomalous magnetic moment from lattice QCD at the physical point.

Phys. Rev. Lett., 120(15):152001.

Davies, C. T. H. et al. (2019).

Hadronic-Vacuum-Polarization Contribution to the Muon's Anomalous Magnetic Moment from Four-Flavor Lattice QCD.

DeGrand, T. A. and Schaefer, S. (2005).

Improving meson two-point functions by low-mode averaging.

Nucl. Phys. Proc. Suppl., 140:296-298.

[,296(2004)].

Giusti, L., Hernandez, P., Laine, M., Weisz, P., and Wittig, H. (2004).

Low-energy couplings of QCD from current correlators near the chiral limit.

JHEP, 04:013.

Outline I

Summary

2 Future plans

References

4 Appendix

Time-momentum representation Bernecker-Meyer 2011

Interchange order of FT and momentum integrals

$$\Pi(q^2) - \Pi(0) = \sum_{t} \left(\frac{\cos qt - 1}{q^2} + \frac{1}{2}t^2 \right) C(t)$$

$$C(t) = \frac{1}{3} \sum_{x,i} \langle j_i(x) j_i(0) \rangle$$

$$w(t) = 2\alpha^2 \int_0^\infty \frac{d\omega}{\omega} f(\omega^2) \left[\frac{\cos \omega t - 1}{\omega^2} + \frac{t^2}{2} \right]$$

$$a_\mu^{\text{HVP}} = \sum_{t} w(t) C(t)$$

(note double subtraction)

Staggered Dirac operator M

Sum of hermitian and anti-hermitian parts, so it satisfies (even-odd ordering)

$$M\begin{pmatrix} n_o \\ n_e \end{pmatrix} = \begin{pmatrix} m & M_{oe} \\ M_{eo} & m \end{pmatrix} \begin{pmatrix} n_o \\ n_e \end{pmatrix} = (m+i\lambda_n) \begin{pmatrix} n_o \\ n_e \end{pmatrix}$$
(1)

and

$$\begin{pmatrix} m & -M_{oe} \\ -M_{eo} & m \end{pmatrix} \begin{pmatrix} m & M_{oe} \\ M_{eo} & m \end{pmatrix} \begin{pmatrix} n_o \\ n_e \end{pmatrix} = \begin{pmatrix} m^2 - M_{oe}M_{eo} & 0 \\ 0 & m^2 - M_{oe}M_{eo} \end{pmatrix} \begin{pmatrix} n_o \\ n_e \end{pmatrix} = (m^2 + \lambda_n^2) \begin{pmatrix} n_o \\ n_e \end{pmatrix}$$
(3)

Compute eigenvectors $n_{o(e)}$, $m^2 + \lambda^2$ of preconditioned Dirac operator

Staggered Dirac operator M

Eigenvectors of preconditioned operator are eigenvectors of M with squared magnitude eigenvalues, construct the even part from odd,

$$n_{\rm e}=rac{-i}{\lambda_n}M_{\rm eo}n_{
m o}.$$

eigenvalues come in \pm pairs: If (n_o,n_e) is an eigenvector with eigenvalue λ , then

$$(-1)^{\mathsf{x}}\psi(\mathsf{x})=(-n_o,n_e)$$

is also an eigenvector with eigenvalue $-\lambda$.

$$\begin{pmatrix} m & M_{oe} \\ M_{eo} & m \end{pmatrix} \begin{pmatrix} -n_o \\ n_e \end{pmatrix} = (m - i\lambda_n) \begin{pmatrix} -n_o \\ n_e \end{pmatrix}, \tag{4}$$

Thus we can construct pairs of eigenvectors with $\pm i\lambda$ for each λ^2 , $n_o!$

HVP using spectral decomposition of M^{-1}

Use conserved current

$$J^{\mu}(x) = -\frac{1}{2}\eta_{\mu}(x) \left(\bar{\chi}(x+\hat{\mu}) U_{\mu}^{\dagger}(x) \chi(x) + \bar{\chi}(x) U_{\mu}(x) \chi(x+\hat{\mu}) \right)$$

and spectral decomposition of propagator

$$M_{x,y}^{-1} = \sum_{n}^{N_{\text{(low)}}} \left(\frac{\langle x | n \rangle \langle n | y \rangle}{m + i \lambda_n} + \frac{\langle x | n_- \rangle \langle n_- | y \rangle}{m - i \lambda_n} \right)$$
 (5)

HVP using spectral decomposition of M^{-1}

$$4J_{\mu}(t_{x})J_{\nu}(t_{y}) = \sum_{m,n} \sum_{\vec{x}} \frac{\langle m|x + \mu\rangle U_{\mu}^{\dagger}(x)\langle x|n\rangle}{\lambda_{m}} \sum_{\vec{y}} \frac{\langle n|y\rangle U_{\nu}(y)\langle y + \nu|m\rangle}{\lambda_{n}}$$

$$+ \sum_{\vec{x}} \frac{\langle m|x\rangle U_{\mu}(x)\langle x + \mu|n\rangle}{\lambda_{m}} \sum_{\vec{y}} \frac{\langle n|y\rangle U_{\nu}(y)\langle y + \nu|m\rangle}{\lambda_{n}}$$

$$+ \sum_{\vec{x}} \frac{\langle m|x + \mu\rangle U_{\mu}^{\dagger}(x)\langle x|n\rangle}{\lambda_{m}} \sum_{\vec{y}} \frac{\langle n|y + \nu\rangle U_{\nu}^{\dagger}(y)\langle y|m\rangle}{\lambda_{n}}$$

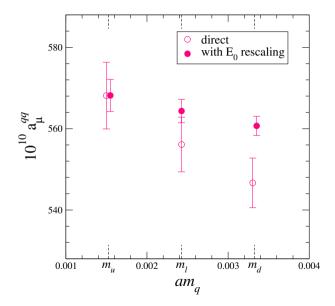
$$+ \sum_{\vec{x}} \frac{\langle m|x\rangle U_{\mu}(x)\langle x + \mu|n\rangle}{\lambda_{m}} \sum_{\vec{y}} \frac{\langle n|y + \nu\rangle U_{\nu}^{\dagger}(y)\langle y|m\rangle}{\lambda_{n}}$$

 λ_n shorthand for $m \pm i\lambda_n$, need to construct the matrices (meson fields)

$$(\Lambda_{\mu}(t))_{n,m} = \sum_{n} \langle n|x\rangle U_{\mu}(x)\langle x+\mu|m\rangle (-1)^{(m+n)x+m}$$

(order eigenvectors
$$\lambda_0, -\lambda_0, \lambda_1, -\lambda_1, \dots, -\lambda_{2N_{\mathrm{low}}}$$
)

Light quark mass dependence of a_{μ} FnalHpqcdMilc[Chakraborty et al., 2018]



- strong isospin breaking study
- $m_{\pi} = 135 \; {\rm MeV}$
- a = 0.15 fm
- change in a_{μ} for 130 MeV pion is negligible $\sim -2 \times 10^{-10}$